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El Nino can harm many sectors in Indonesia by reducing precipitation 

levels in some areas. The occurrence of El Nino can be estimated by 

observing the sea surface temperature in Nino 3.4 region. Therefore, an 

accurate model on sea surface temperature prediction in Nino 3.4 region is 

needed to optimize the estimation of the occurrence of El Nino, such as 

ECMWF. However, the prediction model released by ECMWF still 

consists of some systematic errors or biases. This research aims to correct 

these biases using statistical bias correction techniques and evaluate the 

prediction model before and after correction. The statistical bias correction 

uses linear scaling, variance scaling, and distribution mapping techniques. 

The results show that statistical bias correction can reduce the prediction 

model bias. Also, the distribution mapping and variance scaling are more 

accurate than the linear scaling technique. Distribution mapping has better 

RMSE in December-March, and variance scaling has better RMSE in 

April-June also in October and November. However, in July-September, 

prediction from ECMWF has better RMSE. The application of statistical 

bias correction techniques has the highest refinement in January-March at 

the first lead time and in April at the fifth until the seventh lead time. 
 

 

INTRODUCTION 

El Nino is an extreme climatic phenomenon due to climatic elements (such as sea surface 

temperatures) higher than normal conditions for a certain period. During El Nino, sea surface 

temperatures are warmer than normal conditions in the central Pacific and increasing 

precipitation levels in Peru, Chile, and Ecuador. Conversely, precipitation levels in Indonesia, 

Papua New Guinea, and surrounding countries have decreased from normal conditions 

(Philander, 1983).The El Nino decrease food production (rice and secondary crops) in 

Indonesia by 3.06 percent or around 1.79 million tons during El Nino events (Irawan, 2006). 

This is an earnest problem for farmers in Indonesia, so an effort is needed to minimize the 

impact of the El Nino phenomenon, such as predicting El Nino events using sea surface 

temperatures. Predicting sea surface temperatures has been done by many organizations or 

research institutions that observe climate and weather, one of which is the European Centre 

for Medium-Range Weather Forecasts (ECMWF). ECMWF is a research institute and 

operational service that produces numerical weather predictions. However, sea surface 

temperature prediction from ECMWF products still has biases compared to its observational 

data. These biases can significantly impact seasonal forecasts and future climate predictions 

(Shonk et al., 2019). Thus, a statistical bias correction method is needed to minimize the 

biases (Najib & Nurdiati, 2021). 
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Experts have developed many statistical bias correction techniques, such as distribution 

mapping or quantile mapping (Alidoost et al., 2021; Enayati et al., 2021; Piani et al., 2010), 

linear scaling (Bahari et al., 2021; Lenderink et al., 2007; Rahimi et al., 2021), and variance 

scaling (Barbosa et al., 2021; Chen et al., 2011; Singh et al., 2021). For example, in a 

previous research, Misnawati et al. (2018) tested linear scaling, distribution mapping, multiple 

linear regression, and power regression to correct CHIRPS data based on precipitation data 

from the observational station in Central Java Province, Indonesia. The results conclude that 

multiple linear and power regression gives better performance in describing observational 

precipitation. Furthermore, Lealdi et al. (2018) used quantile mapping to see the relationship 

between the ECMWF data and the observational station in Bali Island from 1996-2015. 

This research used several bias correction techniques (such as distribution mapping, 

linear scaling, and variance scaling) to minimize the bias of the SST prediction model in the 

Nino 3.4 region derived from ECMWF products. Nino 3.4 region is selected because this 

region represents the average equatorial sea surface temperature across the Pacific, from the 

dateline to the South America coast (Trenberth, 2020). Also, Nino 3.4 region is widely used 

by researchers to observe the El Nino phenomenon (Nurdiati et al., 2021). 

 

METHODS 

Authors used Optimum Interpolation Sea Surface Temperature (OISST) as an observation 

model and European Center for Medium-Range Weather Forecasts (ECMWF) as forecasting 

data from 1983 to 2018 in Network Common Data Form (NetCDF) format. Authors used 

OISST data because it is a combination of data observations from different platforms and is 

used to determine the Nino index (www.cpc.ncep.noaa.gov/data/indices/). This data is used as 

the basis for correcting the ECMWF data. The obtained OISST data is a global sea surface 

temperature data with a spatial resolution of 0.25º × 0.25º and daily temporal resolution. This 

data has dimensions of 1440 × 720 × 365 or 366 (longitude × latitude × day). Otherwise, the 

obtained ECMWF data is SST prediction data in the Nino 3.4 region with a spatial resolution 

of 0.25º × 0.25º and daily temporal resolution. This data has dimensions of 205 × 45 × 25 × 

216 (longitude × latitude × ensemble × lead time). OISST data extracted in the Nino 3.4 

region from 1983-2018 in the Nino 3.4. Otherwise, ECMWF data is predictive data that 

predicting sea surface temperature in the next seven months and collected from 1983-2018. 

Meaning, ECMWF data in January 1983 cover SST prediction for January-July 1983 and so 

on. The SST prediction for a month derived from the same month is called lead 1, while the 

SST prediction for a month derived from the previous month is called lead 2, and so on until 

lead 7. Data is partitioned into two sets for both data types, i.e., 1983-2012 as training data 

and 2013-2018 as testing data. 

Statistical bias correction is used to correct the bias from the prediction model based on 

the observation model. Many statistical bias correction techniques have been developed by 

experts, such as distribution mapping or quantile mapping, linear scaling, and variance 

scaling. Distribution mapping corrects the bias of the ECMWF model based on the 

observation model by establishing a transfer function ( )y f x= . The transfer function connects 

the cumulative distribution function (CDF) of the ECMWF and observation models (Piani et 

al., 2010) and given by 
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 ( ( )) ( )OISST ECMWFCDF f x CDF x=   (1) 

where ( ( ))OISSTCDF f x  and ( )ECMWFCDF x  are CDF values of the observation and prediction 

models, respectively (Nurdiati et al., 2019). Misnawati et al. (2018) said that the first step in 

distribution mapping identifies the distribution and probability density function of both data 

(prediction and observation). The second step is computing the cumulative distribution by 

integrating the probability density function. The third step is creating a transfer function 

between the prediction and observation model cumulative distribution. After that, the transfer 

function was used to correct the prediction CDF model, and the corrected PDF model is the 

derivative of the corrected CDF model. An illustration of the bias correction process using 

distribution mapping is shown in Figure 1. 

 
Figure 1. Illustration process of the distribution mapping technique: (a) identifying distribution, (b) 

computing cumulative distribution function (CDF), (c) creating a transfer function and calculating the 

corrected CDF model, and (d) calculating the corrected PDF model. 

For the second method, linear scaling adjusts the prediction model based on the 

difference between the prediction model and the observation model on average (Lenderink et 

al., 2007), given by 

  ( )COR ECMWF OISST ECMWFT T T T= + −  (2) 

where CORT  and ECMWFT  are the ECMWF model after and before corrected, respectively, while 

OISSTT  and 
ECMWFT  are the average of the OISST and ECMWF models, respectively. An 

illustration of the bias correction process using linear scaling is shown in Figure 2. 

 
Figure 2. Illustration of the bias correction process using linear scaling: (a) identifying distribution, 

(b) shifting the prediction data using equation (2). 

Otherwise, the variance scaling method corrects the prediction model by adjusting the 

mean and variance values (Chen et al., 2011). A variance scaling is a three steps bias 

correction method (Teutschbein & Seibert, 2012; Yamamoto et al., 2021). The first step is 

correcting 
ECMWFT using linear scaling in equation (2). The result denotes using *

ECMWFT  and shift 

the average to zero by 

 ** * *

ECMWF ECMWF ECMWFT T = −   (3) 
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where *

ECMWF is the mean of *

ECMWFT . In the second step, the standard deviation of **

ECMWFT  is 

corrected using 

  *** **

**

OISST
ECMWF ECMWF

ECMWF

T T



=   (4) 

where 
OISST  and **

ECMWF are the standard deviation of 
OISSTT  and **

ECMWFT , respectively. The final 

step, restore the average of the ECMWF model using 

 *** *

COR ECMWF ECMWFT T = +   (5) 

where 
CORT is the corrected ECMWF and *

ECMWF  is the mean of *

ECMWFT . An illustration of the 

bias correction process using linear scaling is shown in Figure 3. 

 
Figure 3. Illustration of the bias correction process using variance scaling: (a) the result of linear 

scaling *

ECMWFT , (b) shifting to zero mean **

ECMWFT , (c) scaling the standard deviation using equation (4)
***

ECMWFT , and (d) shifting to original mean
CORT . 

 

The three statistical bias correction techniques require a parametric distribution for 

processing. In this research, the prediction and observation model distribution is fitted using 

several parametric distributions, such as beta (Johnson et al., 1995), Birnbaum-Saunders 

(Johnson et al., 1995), exponential (Johnson & Wichern, 2007), extreme value (De Haan & 

Ferreira, 2006), gamma (Hogg & Craig, 1978), generalized extreme value (De Haan & 

Ferreira, 2006), logistic (Sarkar & Balakrishnan, 1994), log-logistic (Bennett, 1983), log-

normal (Johnson et al., 1995), Nakagami (Mitra et al., 2012), normal (Hogg & Craig, 1978), 

Rayleigh (Siddiqui, 1964), Rician (Talukdar & Lawing, 1991), t location-scale (Mayer, 1987), 

and Weibull (Papoulis & Pillai, 2002) distribution. The distribution is selected based on 

several parameters such as Negative of the Log-Likelihood (NLogL), Bayesian Information 

Criterion (BIC), Akaike Information Criterion (AIC) dan AIC with a correction for finite 

sample sizes (AICc) (Liddle, 2007). 

The prediction models in testing data before and after corrected are evaluated against the 

observation model using Root Mean Square Error (RMSE), as follow 

 2

1

1 ˆ( )
N

i i

i

RMSE f f
N =

= −   (6) 

where N is the sample size of data, ˆ
if and 

if represent the prediction and observation model 

(Zhang & Singh, 2007). 
 

RESULTS AND DISCUSSION 

General descriptions between the prediction and observation models are used to identify 

characteristics among the data, such as comparisons of distribution's shape, skewness, range, 

etc. For example, using the violin plot, Figure 4 shows three general relationships between the 

prediction and observation models represented by January, April, and August. Violin plot 
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combines box plot and data distribution function on both sides (Hintze & Nelson, 1998). We 

used MATLAB for both computation and data analysis. 

 
Figure 4. Violin plot of the prediction (E1-E7, ECMWF at lead time 1–7 months) and observation 

(OI, OISST) models in (a) January, (b) April, and (c) August 
 

There are three general distribution relationships between the OISST observation model 

and the ECMWF prediction model. First, Figure 4(a) shows the mean of the prediction model 

higher (or the same at the longer lead times) than the observation model (generally 

overestimated). Second, the observation model has positive skewness from the distribution's 

shape, which means that the right-hand tail will be longer than the left-hand tail. Otherwise, 

the prediction model has a nearly symmetric distribution. Finally, besides January, the month 

with this relationship is in February, March, and December. 

Furthermore, Figure 4(b) shows the mean of the prediction model higher at the shorter 

lead times but lower at the longer lead times than the observation model. The observation 

model has a nearly symmetric distribution from the distribution's shape. The prediction model 

has negative skewness, which means that the right-hand tail will be shorter than the left-hand 

tail. Besides April, the month with this relationship is in May, June, October, and November. 

Last, Figure 4(c) shows the mean of the prediction model higher at the first lead time but 

lower at another lead time than the observation model (generally underestimated). The 

observation and prediction models have negative skewness from the distribution's shape, 

which means that the right-hand tail will be shorter than the left-hand tail. Besides August, the 

month that has this relationship is in July and September. 

The high variance implies the low precision of the prediction. Conversely, if the 

variation is too slight, the prediction model cannot reach the extreme value of the observation. 

Thus, a statistical bias correction is needed to correct the prediction model by identifying the 

relationship against the observation model. The three statistical bias correction techniques 

require a parametric distribution for processing. Using parametric distributions mentioned 

above. Table 1 shows the results of the fitting distribution process of the prediction and 

observation model training data in January at the first lead time after sorting by the goodness 

of fit parameter. 

Table 1. The first three results of the fitting distribution process of the prediction and 

observation model training data in January  

Lead time 1 prediction model  Observation model 

Distribution Parameter Goodness of fits Distribution Parameter Goodness of fits 

Generalized 

Extreme 

Value 

k = –0.339 

𝜎 = 0.9108 

𝜇 = 26.426 

NLogL: 1031 

BIC: 2064 

AIC: 2062 

Generalized 

Extreme Value 

k = –0.224 

𝜎 = 0.8021 

𝜇 = 26.064    

NLogL: 9914 

BIC: 1985 

AIC: 1983 

Normal 𝜇 = 26.715 

𝜎 = 0.8856 

NLogL: 1038 

BIC: 2078 

AIC: 2076 

Birnbaum-

Saunders 

𝛽 = 26.367 

𝛾 = 0.0316 

NLogL: 9967 

BIC: 1995 

AIC: 1994 

Rician s = 26.7012 

𝜎 = 0.8858 

NLogL: 1038 

BIC: 2078 

AIC: 2076 

Log-normal 𝜇 = 3.2721 

𝜎 = 0.0316 

NLogL: 9968 

BIC: 1995 

AIC: 1994 
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Figure 5. The results of statistical bias correction for the ECMWF prediction models in January 2013-

2018 and their comparison to the OISST observation model. 

 

As mentioned above, the prediction and observation model distributions are selected 

based on NLogL, BIC, and AIC. Table 1 shows that generalized extreme value distribution is 

the fittest parametric distribution for the prediction model at lead time 1 and the observation 

model. Generalized extreme value distribution is a family of continuous probability 

distributions developed within extreme value theory to combine the Gumbel, Fréchet, and 

Weibull families. The GEV distribution is the only possible limit distribution of properly 

normalized maxima of a sequence of independent and identically distributed random variables 

(De Haan & Ferreira, 2006). This process is repeated for the observation and prediction 

models at the first until the seventh lead times. 

The statistical bias correction process is divided into two stages, namely the training and 

testing stages. The training prediction model will be corrected in the training stage based on 

the training observation model using the distribution mapping, linear scaling, and variance 

scaling techniques mentioned above. This stage produces a transfer value from each method. 

Furthermore, the transfer value is used to correct the testing prediction model in the testing 

stages. 

The results of the distribution mapping, linear scaling, and variance scaling techniques 

are used to correct the ECMWF prediction models in 2013-2018. For example, statistical bias 

correction for the ECMWF prediction models in January 2013-2018 and their comparison to 

the OISST observation model are shown in Figure 5. The statistical bias correction method 

can correct the prediction model at lead time 1, i.e., the mean and variance of the corrected 

testing prediction model are closer to the observation model than the ECMWF prediction 

model. Unlike distribution mapping or variance scaling, linear scaling does not refine the 

variance of the prediction model but only refines the mean by shifting the distribution. All 

three statistical bias correction techniques can refine the prediction model on average. The 

linear scaling method is the fittest model in January at the first lead time by a distribution 

range. Refinement to the mean is also seen in lead times 2 and 3, but the fittest models are 

given by the distribution mapping and variance scaling, respectively. Otherwise, in the 4th–

7th lead time, refinements to the mean are not seen. The only improvement occurred in the 

variance of the prediction models, which is closer to the variance of the observation model. 

The distribution mapping technique gives the fittest models in January at the 4th–7th lead 

time. 
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The testing processes are repeated for each month and lead time. However, the results 

are not analyzed one by one. The statistical bias correction technique is said to be successfully 

correct the prediction model if the RMSE value of the corrected prediction model is lower 

than the RMSE value of the ECMWF model before correction. The fittest model, RMSE 

value of the most suitable model, and the amount of RMSE refinement from the ECMWF 

prediction model for each month and lead time are given by the heatmap plot in Figure 6. 

Figure 6(a) shows that the distribution mapping and variance scaling techniques are 

more fit than the linear scaling technique. Distribution mapping has better RMSE in 

December-March, and variance scaling has better RMSE in April-June also in October and 

November. However, in July-September, the prediction from ECMWF has better RMSE, 

which means that statistical bias correction techniques are unsuccessfully corrected the 

prediction model in these months. Furthermore, Figure 6(b) shows that the prediction model 

has high accuracy in the first until third lead time for each month. In the lead time of more 

than three months, the prediction model just accurate to predict the SST over Nino 3.4 region 

in March-June. Generally, Based on Figure 6(c), the application of statistical bias correction 

techniques has the highest refinement in January-March at the first lead time and also in April 

at the fifth until the seventh lead time. Moreover, the maximum refinement of distribution 

mapping is 0.34, better than linear scaling and variance scaling with 0.32 and 0.30.  

 
Figure 6. (a) the fittest model, (b) the RMSE value of the fittest model, and (c) the amount of 

RMSE refinement from the ECMWF prediction model for each month and lead time. 

   
 

CONCLUSIONS 

The research results show that statistical bias correction using linear scaling, variance 

scaling and distribution mapping can reduce the prediction model bias. In the fitting process, 

authors found that the fittest distribution of most months and lead time of the data is the GEV 

distribution. Based on the RMSE value, the distribution mapping and variance scaling are 

more accurate than the linear scaling technique. Distribution mapping has RMSE in 

December-March, while variance scaling better in April-June and October-November. 

However, in July-September, prediction from ECMWF has better RMSE. Moreover, 

statistical bias correction techniques have the highest refinement in January-March at the first 
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lead time and in April at the fifth until the seventh lead time. Generally, distribution mapping 

is better than variance scaling or linear scaling based on the maximum refinement value.  
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